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the ilntersection cut approach,

i TP M o g X
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ABSTRACT

Polaroid sets and functions have been introduced as a new tool,

with applications in non~linear programming, particularly in quasi-concave

and integer optimization problems over a linearly constrained set of feasible
solutions, _

The name polar programming applies to a general class of non-linear
mathematical programming problems which can be solved by the polaroid
approach., 1In integer programming polaroids yield non-trivial extensions of
the intersection cut approach.

This paper builds on the properties of polaroid sets (particularly com~
plete convex polaroids) and focuses on the following intersection problem:

Given a point X belonging to the polaroid set P*, find
the intersection point u* of a one-dimensional ray u with the
boundary of P* : u* ¢ (bd P* flu) .

We also present a theoretical comparison of the relative merits of scveral

currently proposed cutting planes for integer and/or concave programming.
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a8 On Polaroid Intersections

by Claude~Alain Burdet

0) Introduction
Folaroid sets and functions have been introduced in [9], where we men-~

tioned areas of application in non-linear programming, particularly in quasi-

2 concave and integer optimization problems over a linearly constrained set of R
;s feasible solutions.

Qit‘ Polaroids can be used to improve the efficiency of the algorithms out-

lined by Hoang Tuy in [16] for the maximization (minimization) of a quasi-

convex (concave) gcbjective function over a polyhedral set. They also improve

in a similar way the modified version of this approach, presented in [12] by

T D RN
e

Glover and Klingman. Further algorithms outlined in {8] can also be extended

by using polaroids and in [10] we gave the name polar programming to a gen-

eral class of non-linear mathematical programming problems which can be

solved by the polaroid approach.

In integer programming polarcids yield non-trivial extensions of the P4

"f f intersection cut approach of Balas [1, 11, 5] as indicated in [9]; in [7],

a gpecial type of polarold is presented and we show how it brings under one

roof the enumerative approach of [5,6] and the extension method of Balas [2,3];

it also illustrates a connection between concave and integer programming, of

a nature different from that of Rajavaghari [14].
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2,
Consider the following general principle for solving the (arbitrary)

mathematical programming problem:

maximixe g(x}, subject to xeP
where x is an n vector
P a subget of Rn

g a real valued function of x ¢ )

Mathod: Construct a (finite) collection of n-dimensional simplices

5, ¢ R" , jeJ such that

a) pcs= U Sj
JeJ
b) Vjel one has

max g(x) <A

xe (S, N P) J
J
where 4 is a lower bound:

J

Aj <g (x) , for some x ¢ P

One casily establishes that the optimal solution X of the
original problem is delivered by (finite) search: X e {xj, jeJ}
such that g x) > g (xj) s ¥ijed .

Particular examples of this general method are described in [8]
and [10]; they can be classified as follows:

= cutting plane algorithms (see, for instance, [16], [1],

(11], 51, (6], [7])
- enveloping algorithms (see [10])
- partitioning algorithms (see [10], [16], [4], [12])
One of the basic ingredients in the above general method lies in the

construction of the simplex Sj , ¥jeJ 1i.e., in the determination of its

(n+l) vertices.
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3.

This paper builds on the properties of polaroid sets (particularly com-
plete convex polaroids, as defined in [9]) wihich allow for the construction
of simplices § possessing the desired properties. We focus our atten-

h]
tion on the determination of the vertices of SJ s obtained here from the

following intersection problem: .

- *
Given a point x belonging to the polaroid set P  (for a
*
definition see saction 1 below), find the intersection point u

of a one~dimensional ray u , with the boundary of P* : u* ¢ (bd p* nu).

First we outline the baslc methodology which leads to polaroid inter=-

section algorithms. 1In a second part we sketch some tyvpical examples of

polaroid functions and sets.
The interested reader is referred to [3,4,7,12,19] for application areas

and to [9] and [10] Eor further aspects of the theory cr polaroids.

1) Definitions
In order to make this report self contained, we briefly reproduce here
some definitions from [9].
Let the polaroid function £ = f(x,y) be real valued vith two arguments
- n

x and y which are n-vectors; let [ denote a closed set ia R,

*
Definition 1: The polaroid set P (k) defined by the polaroid function f

with respect to the set P and the parameter k ¢ f(P, R")

is

P (k) ={y | £(x,y) £k , ¥xeP}
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One has the
*
Theorem 1: The polaroid set P (k) 1is convex Vk

iff the polaroid function f = f(x,y) is
quasi~convex in y , for all xeP.

Proof: Presented in [9] and omitted here.

Although non-convex polaroid sets P* may 8lso be of occasional intere
esﬁ (see [9]), we are mainly concerned here with convex polaroids,
Definition 2: Consider the point X e P*(k) and a vector a ¢ R" ; we

define the ray u , as the following half-line originating

at x in the direction (-a) :
u = [u(l)‘u= X-da , A > 0}
Denote by Fa = Fa(X) the real valued function

Fa(k) =max {£(x,x = Aa)}
xeP

Propogition 1: Let A* satisfy
1 A0
%
2) Fa(k ) =k
* % *
then u = u(A') lies on the "boundary'of P (k) , i.e,

u' ¢ bd P*(k) = {y ¢ P*(k) | £(x,y) =k , for some xeP}

s
Proof: From the hypothesis 2), 4 x guch that
* * * %

f(x,x-ra)=£f(x,u) =k. QED
We now briefly indicate below (a more detailed study can be found in [9))
how polaroids find their justification and application in non-linear optimiza-
tion problems: the fullowing results make it possible to solve (in principle)
a very broad class of problems using polaroids and the general method outlined

above.
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Definition 3: ‘he polaroid P*(k) is called complete if P C P*(k) ' £

Theorem 2: Let A =g(X) =max g(x), with g(x) = £(x,x) . If B*(n) is complete
xepP

then every optimal solution X of the problem
maximize g(x) , subject to xeP

l1ies on the 'boundary'of P (A) .
Proof: VPresented in [9].

o
Propogition 2: Assume f(x,y) quasi-convex in y , ¥xeP ; then P (A) is

a gomplete convex polaroid and any collection of simplices :
Y i i

Sj » jeJ such that Sj cP(p) VieJ and PC S = U Sj

jed

yields a sufficient optimality condition.

*
Proof: Convexity of P (A) was established in Theorem 1 and completenass
follows from the choice of A ; optimality of X then follows from

the observation that £(x,7) <A = g(x) , WxeP , ¥yeS, , ¥jed

]
and from the assumption P C S , B QED

The general method described in the introduction now becomes operational
o
when the simplices S, are constructed as subsets of the polarcids P (k) ,

3

% *
because, for k < 0, one has SJ <P (k)< P (A) (aproof is given in [9]);

in practice, the value of k is gradually increased (step-wise), until the

optimal value A 1is reached. Thus the only problem remaining in the
design of an algorithm is the practical construction of the simplices Sj .
2) The Intersection Method

The proposition 1 indicates that the determination of intersection

point reduces to the parametric linearly constrained optimization

process described below:

Find X > 0 such that Fa(i) = max £(X,X = na) < k;
xeP

- - - *
if Fa(k) < k then u = u(A) can be seen to lie in the'interiod' of P .

Int  P*(k)

{y | £(x,y) <k , wxeP} ;
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- *
i1f F.(k) m )k , then u 1lies on the''boundary'set bd P (k) defined in sec- .

SUVENY

* ,
tion 1 and it is therefore a solution u to the intersection problem,; @

The polaroid intersection problem therefore can be seen to contain the fol-
= | lowing two parts:

P1) A Mathematical programming part:

maximi ze z(x) = £(x,x - \a) , X given

7t 3 subject to xeP

= P2) A paxametric sgarch problem:
: *
b Find A" =max {A | F,(\) g K}
ok ) A>0
In general neithexr of these optimizations can be executed erxactly and one often

prefers a good approximate solution which is obtained in few computations.
fg ' This approximation, however, must be such that the approximate intersection

\ he dpproxim An

Y : *

-t point U belongs to the set P (k) .

For the problem P1) this means that one needs an upper bound solution e

~F

% such that "é

z(x) < Z = 2(X) =F,%) <k,
XeP

3 For the problem P2) this implies X <A . !
We now turn to the important special class of convex polaroid sets, thefe
, the intersection problem plays a fundamental role in the construction

1; » of algorithme (see [21}]).

Corollary 1.1: If the polaroid function £(x,y) s quasi=-convex in

¥, ¥xeP , then VaeR" the intersection function F )

i: is quasieconvex in ).
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Proof: By definition one has VacR" :

F () 2 £(x,y =x = Aa) , VxeP
1_- 1 2 - .2
Let y =x-na,y =x-2r%, \anl v @qn? vith pefo,1):

y3 -y - [uxl + (lmp)kzla = uyl + (l-u-)y2 ;

for 1=1,2,3 one has by hypothesis Fa(ki) > f(x.yi) s WXeP , with

Pa(ki) = f(xi,yi) , for some xieP H

“hence F‘(x3) - f(x3.y3) = f(x3.uy1+ (l-u)yz) < max {f(xs.yl), f(x3’y2)}

< max (£t 1), £0%,9%)} = max [Fa(kl). Fa(kz)}
QnE-D-
Theorem 3: Let f(x,y) be quasi~convex in Y 5 ¥xeP ; and

let A =max (A ] F,() <)
A>0

then F,(\) SF,0\") =k , We [0,A"]

- * -
Proof: By hypothesis x ¢ P (k) , implying f£(x,x) £k, VxeP thus
Fa(O) < k ; the quasi-convexity of Fa established in the corollary
1.1 completes the proot.

QaEch

The above theorem corroborates a well-known property of convex sets

vith_respecc to their intersection by a one-dimensional line (ray); the situation
4¢ complicated here' by the fact that the function Fa(A) 1is not explicitly
known but merely defined in terms of the (arbitrary) optimizetion problem Pl;
naturally the determination of an intersection point could also be formulated

as ,one single optimization problem in the variables x and )\ ; however,

the independance of the comstraints in x and A variables respectively as

e
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well as the separate properties of f (with respect to x and y rolpcﬁ-
tiwely) motivates a separate treatment of the optimization in x and in A H
the result of theorem 3 indicates that the parametric search problem P2 can

x Y W
be solved by increasing stepwise the value of A until X (or A <))

\
i .
is reached; each step consist8in a (post-) optimization of the mathematical
Y
programming problem P1, The resulting algorithm becomes a non-linear descent

[}

algorithm of a particular type. }

Algorithm:

Step 0: Let xo =0, i=1,; choose Al > 0 such that

f(x,§ - kla) <k , VxeP, 1i.e, % W hi a =y ¢ P*(k)

\
\ Step 1: Solve the (linearly constrained) mathematical programming \
problem

Pl: max z(X) = f\‘(x,;: - \8) . 8.t xcP

\ \

Step 2: |
' \
\ 2.1: If 2z =max z(x) =k then !
i ; xeP
2.2: 17 z >k, then choose LY (Xi-l’ Ag)
0 2.3: If z < k , then choose Ki+1 > ki
set i =1+1 and go to Step 1. \
v \
Remarks:

1) The above algorithmic principle mérely represents an unpolished set of guide- |\
° 1

lines; dependiﬁg on the particular probleh at hand it can be refined té

!
increase computational efficiency (see section 3).

2) Clearly the above algorithm need not be finite; practica?'v however, one

\ *

should remember that there' usually is no need for an accurate value of A ;

\
!
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: § thus ithe exit criterion of step 2 normally will be made to corntain a (often

2 large) "fuzz'" factor ¢ > 0 and reads:
i , ' ! 2.1; If z cI[k-c , k] then SToP '\ i
£ él and 2.31 is modified accordingly to become -
| §' \ 2.3: If z < kee then choose ki+1 > ki |
; gf The algorichﬁ then delivers an approximate intersection point ﬁ € P*(k) in a
g' ' finite nuniber of iterations (this number clearly depends on the quantity ).
? \E : ' s
S 3) Some Exagples of Polaroid Intersections . ' .
.; ? ‘ This section presents below a list ;f patticular polaroids* ranked by
: order of incydasing complexity of the corresponding intersection problems,
) \

! t
. ‘g 3.1) Bilinear polarxoids: f£(x,y) = Ax + By + yTbx :
. - \
gf % In thia cane:the polaroid P*(k) is convex and the deter-
g{ % \ miﬁltion of a; intefsection point u*\ is obtained by'solving
'} g a papraspetric linear progyam. \
g’\ i, - . max z(x) = B(x~\a) + [A + (E-ka)TC]\ x

1

vola %eP
Problem Pl is an qrdinary L.P. and the increment of A in
step 2 of the algorithm is determined by the prebioua optimal
solution X of atep 1. Because F,(A) 4is known to be giggg-
wise linear, the optimal value k* can be obtained by linear
algebra in a finite number of iteracioﬁs.
3:1,1.: For the case where C is a symetri¢ positive definite
matrix, Balas has first recognized in [3] éhe possibil-

ity to use sets he calls\outerngolars to generate
1
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valid cutting planes in integer programming with the
help of parametric linear programming (the outer-
polar is a @eneralized polar set (see [15]) and also

a Gpecial polaroid set[9]). The same technique is used

by Balas and Burdet in [4] to solve quadratic concave

Tt e L A e e s b b
-

Programs.

33: 3,1.2: For indefinite as well as semi-definite quadratic

programs’poluroid cuts have been implemented success-

fully in a facial decomposition schema for solving the

3.1,3: Another application for valid cuts in integer program-

ming is given in [7]; there polaroid cuts are constructed

from a homoganenus (A=B=0) bilinear polaroid function

% which 18 centerad at the origin (i.e.at X); this

[

1

]

l

!

|

|

J
D
ggneral quadratic programming problem [21,22]. ifa‘
E

1

{

{

i

]

i

{

j case presents computational advantages because the ?
'; ! optimization problem Pl and P2 can be combined in a
gingle linear program (not parametric); indeed, one

can verify by inspection that the problem Pl,

103., max "(AaT Cx) _<_ k ’
xeP

1
directly delivers the optimal value |

max (-aT Cx)

*# <1 _1
)y = k x¢P

of problem P2.

3.2) The previous bilinear polaroids are a particular case of the fol- 1

lowing family (with parameter «):

£x,y) = 5(X) + a(y-0)Y F(X) , where g(x) =x F(x)

(F 1is a vector valuéd function),

As an illustration, consider the (quadratic) rase where

.

F(x) = Cx (C =n by n symmetric matrix) :
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one has £(x,y) = (l-a) xT Cx 4+ o yT Ccx

(Por simplicity, let us assume C positive definite.)

3:2.1: a=1: f(x,y)= yT Cx , bilinear polaroid (see 3.1 above)
3:2:2: a=2: f(x,y) = --xT Cx + ZyT Cx.

Note that o F(x) = 2 Cx = Vg(x) ;

Thus we have here an illustration (quadratic) of
the general polaroid function £(x,y) = g(x) + (y-x)T Vg (x) .
:UE . The polaroid set P*(k) provides here for an gnalytical
characterization of the level set of the maximal convex

f; 4 {concave) extension of the convex (concave) function g(x)

with respect to the set P » which has been characterized,

\ 3 . in geometrical terums, by Hoang Tuy in [16].

32223t o >1: 1In this case (which contains, in particular,

the previous one 3.2.2), the mathematical programming probe-

_'% : lem P1 {8 a convex quadratic programming problem over a
- b polyhedral feasible set P and it can be solved by the ;

: ; corresponding classical algorithms,

IR

3,2.4: a=e : As @ becomes very large, only points y with

'57( (y=x) = 0 will become tolerable; the polaroid

set therefore simply becomes identical with the

original set P ,

332.5: @ <1 : Here problem Pl i{s a concave program (i.e.
wax (min)imization of a convex (concave) ob jective
function),

When 0 <o <1, an illustration of the unifying

insight provided by the polarcid approach in the fields of

concave and/or integer programming can be found in [7].

A ~ = S =) OV T A TR Uy o " L o
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We describe here @ more general situation:

aspume that A = 3(33 = max xT Cx ; then, for a small
xeP

enough value a>0 » the polaroid PE(A) will be the

halfspace(s) determined by the hyperplane(s) supporting P

at the optimal solution(s) X . This is the "largest"

*
polaroid P in the family, with the desirable property

* ¥ *
that ¥ f Int P = (P - bd P ) , as shown in the proposi-~

tion 3telow, Larger values « > & yleld a lower bound for

)
!

4
approximation; the intersection algorithm could thus conceivably be|'1

. 3 the intersection parameter A\ , which can be used as an

refined by changing the parameter o (starting with, say,
; the L.P, value o =1 ) and poat-optindzing the (new) }f?
problem P2 to find a better value for A ; ultimately this

process determines the intersection parameter A with the

polaroid Pt(A) .
o

In integer programming, the outer-domain theory (see, i f

: *
b for instance,{6) and [7]) indicates that P_(A) 1is the
; . (¢ 3

intersection of a collection of halfspaces, each belonging

to a feasible vertex of the unit cube; decreasing the
| ' parameter « (down from o = 1 ) therefore corresponds

to introducing-additional integrality requirements into

! the linear program obtained in 3,1, see [7].

%.' 3:2.6: a=0 : 1In this case f£f(x,y) = g(x) and is independent ";
: e

of y ; hence P 1is the whole space whenever

kef(P,R" ), and P*=¢ otherwise. {
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: Proposition 3: Dafine Pa(k) -y ] xCx + aly-x) Cx <k, WxeP) ; 3
,.‘:' Assume o« >0 and PC levkg(x), that is:g(x) = ¥ Cx < k, VxeP.
§ * * _
then P (k) cP (k) iff ¥ za .
o o 1 =72
1 2 %
"
Proof: Take Yy € bd Pa (k) and choose xl'P such that :
1 !
T. T 1
f(xlsyl) =Xy Cxq + 0‘1(-"1""1-)-"“-‘1 «k {
T I;:x.f Cxl ‘{
then one has (y -xl) ‘Cx, > 0 because 0 < a, = ~swsomowcm— , :
1 1= 1 T ;
3 { 1) 70%y |
where ):'f;}c-,c1 < kg by hypothesis. %
X * |
5 Furthaermore yl'Pa (k) implies a, < @ , as shown below: i
2 ‘
°F !
T T T T T., . ,
X Gy 4y (y;=K))TCxy = Xy CX) + @y (¥y=X)) 0%y + (apmey) Gy =x) 7Ok, 2 K §
; hence (az-o-l) < 0 must hold true }
since x,eP and xT Ccx, + - TC k ith Te 0 z
1 1 Cxy + o (yy=xp) Oxp =k , with (y;=%))"Cx; 2 0 . i
u'::' i
. _ . 1
2 On the other hand, assuming «, < a, , suppose Yy, £ P " (k) ;
': 2 1
,
‘ then d x, ¢ P such that |
3 T, T |
X, 'Cx, + dZ(YI-XZ) Cx, = k' > k; T !
T k"x9 sz -
but (y,=x,) Cx, > 0 because 0 < @, = ~———=m—— . ‘
1 ™2 2= " = "2 T i
(Yl"xz) sz ?
|
: *
' Hence one obtains from ¥y ¢ P (k) :
g %
xr‘-‘c + a,(y,=x )T Cx, + (a,=a,) (y,=% )T Cx, < k
g VRT ¥y 2 17%’ V1™ 2 =
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thnti's(al-az) <0 must hold because

T T _ T
-xa‘Qsz + az(yl-xz) sz > Kk by hypothesis and (y1 xz) sz >0,

But this implies oy < o, which is contrary to hypothesis; thus
*
y, ¢ P_ (k) . Q.E.D,
1 a, /
One may conclude from proposition 3 that there may be a reward for solving ! '

increasingly difficult problems since for small o« the intersection prob-

i
|
lem 18 of the same order of difficulty as the original (for instance, concave )

or integer) problem one is trying to solve with the help of polaroids. _
i’, ' Note that parametric linear programs (v = 1) however hold a position 1 7
\‘ which sesms to make them computuationally quite attractive in that respect.
’r 2-._.2!;‘}2 palaroide: 'This claes contains all the previous cases and is charac- ‘ f

terizad by functions £(x,y) which are linear in_ y , ¥xeP ; the con-

*
ﬂ vaxity of the corresponding polaroid sets P (k) 1ig¢ readily verified (see

thearem 1).

Of course this class may contain a variety of different types of optimiza= |
tion problems Pl: convex, concave, discrete, etc.. ., . but linearity in

i y makes it easier to predict adequate increment for A in the algorithm, .3

LY

One should also note that the convexity of P* makes a cutting plane
, _ approach posaible for problems which do not possess convex level sets
of the objective function g(x). An example of this type can be found

in [21] and a general discussion of polar progrums is presented in [10], !

L L F [T s oo e we eeen am ) i,
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3.4 A more genaral class yet is defined by polaroid functions £(x,y)
vhich are merely required to satisfy the hypothesis of theorem 1 in order
to yleld ¢copvex polaroid sets, Here, excapt for very special functions,
there are no artifices available to render the problem P2 more easily
tractable, and one has to resort to the stepwise incremental method des=-
cribed in the algorithm to solve the intersection problem (depending on
the actu;l funetion £ 4t may become more or less difficult to determine
adequate increments (x1+1- ki) ).

Q;Q.Oun may also use polaroid sets which are not assumed in advance to be con~

| vex; sfter solving the intersection problems involved by a cutting plane

approach, for instance, one has then to test the validity of the cut; this
task is essentially different from checking & quasi=convex property of

£(x,y): &nd in some instances, cuts may a posteriori be easily proved

valid; when generated from non-convex polavoids, they may also be deeper

than intersection cuts from convex outer-domains.,
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